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FOREWORD

This report is one of a series of studies sponsored by the
Quartermaster Research & Development Laboratories in the general
field of the mechanical properties of textile structures. In
previous reports of this Textile Series (Nos, 60 and 62) attention
has been devoted to the effects of form factors on the translation
of the inherent physical properties of textile fibers into yarn
structures, Both staple and continuous filament yarns have thus
far been studied in a straight configuration., It is therefore
logical to devote attention to the geometry of bent yarns, for
it is in this form that yarns lie in the end textile.products.

It is the purpose of this report to formalize the elements
of bent yarn geometry through careful analysis of an idealized
yarn structure. The products of such an analysis are expressed
in mathematical relationships presented in a form most useful
to the textile materials engineer. To encourage use of the
results by practical designers, an effort has been made to
present complete graphical conversions from practical textile
data to the dimensionless parameters utilized for maximum

generality in the analysis.

This study on bent yarn geomstry, conducted by Mr. Stanley
Backer, consultant to the Quartermaster Laboratories, forms a
logical part of the broad continuing textile program sponsored
by the Quartermaster Corps in the field of stress-analysis in
textile structures.

The work was done as part of one of the projects of the
Textile Materials Engineering lLaboratory in Philadelphia, which
- is headed by Mr. Louis I. Weiner, The assistance of Mr. Walter J.
Hynek, Physicist of this laboratory, in computing values for
many of the equations and in the preparation of the graphs is
gratefully acknowledged.

S. J. KENNEDY
Research Director
for
May 1952 Textiles, Clothimng and Footwear
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Introduction

The influence of yarn geometry on the translation of fiber
properties has received increasing attention during recent years,
The early studies reported emphasized the relationship between
the structure and the mechanical properties of singles yarns whose
axes lie on a straight line, [h,5,7,8] Of late the importance of
bending in yarn geometry and in the mechanical properties of the
end textile structure has been clearly indicated. [1,6] For the
yarns we use are rarely straight; they are usually bent into torus
shapes during the weaving process or into helical forms when twisted
into plied structures. Yarn bending is inherent in wovwen and knitted
structures, in sewing threads, tire cords, twines, and ropes. In
addition yarns are subjected to bending during use of the end textile
structure, in flexing, draping, or creasing of an apparel fabric,
in the waving of a flag, the billowing of a tent, the packing of a
sleeping bag, the knotting of a rope, the forming of a stitch in the
sewing process, the flexing of a rope over a pulley, the washing of
a blanket.

The mechanical properties of the original textile structure and
its behavior under service conditions will depend to a great extent

"~ upon the strain to which its individual fibers are subject. The

level of fiber strain will in turn depend on the configuration which
the fiber is forced to assume, and therefore on the structure of the
bent yarn. It follows that study of bent yarn geometry is essential
to the full understanding of strain and therefore of stress distri-
butions in the textile strncture. Only through such understanding
can we hope to predict the integrated mechanical behavior of twisted,
woven, or knitted textile products.

This report attempts to outline the development of an idealized
geometry of bent yarns. It is realized that actual yarn structure
will at times depart to & significant degree from the mathematical
forms proposed herein, However, even in such cases the geometric
forms will be useful as a common basis of structural comparisons,
and considerable insight into the behavior mechanisms in bending
of a given material will follow from study of the causes of its devia-
tions from the ideal geometry. The implications of such insight '
has direct bearing on long-standing problems in many areas of textile
research. We refer to such subjects as knot efficiencies, seam
efficiencies, sewability (from the standpoint of loop formation),
cord and power transmission, rope wear, flex resistance and internal
abrasion of fabrics, crease and muss resistance and abrasion resis-

tance.
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It should not be supposed that the following material is
solely the work of the author. A major portion of the analysis
here proposed is based on work of others, notably Schwarz [l]and
Chow.[2] The modus operandi of this study involves 1) selection of
special cases from the more general studies of twist in plied struc-
tures and 2) the extension of these special cases as they relate to
the geometry of bent singles yarns. Specifically the report deals
with: A. the local strain caused in fibers at various yarn loca-
tions when they are bent, B, the average strain taking place in
fibers forced toc follow the ideéalized geometric path in bending with-
out the benefit of freedom of relative motion with the yarn, C. the
relative motion between fibers due to shifting from the bottom to
the top part of the loop, D. the relative motion between fiber sur-
faces due solely to changes in local helix angles, E. the changes
in local helix angles which occur in yarn bending, and F. the curva-
tures of fibers at all locations in a bent yarn.

To achieve maximum generality in the analytical development it
has been found expedient to use dimensionless parameters wherever
possible, This feature will, however, reduce the speed of computa-
tion when basic data are available in common textile terms rather
than in the geometric parameters used throughout the report. This
difficulty can be alleviated by provision of graphical conversions
for use of the practical designer. Further ease in computation is
made possible through provision of the graphical form of the analyt-
ical relationships, plotted over practical ranges of the geometric
parameters, The analysis follows.

As Local Strain

4 singles yarn is taken as the major element of structure,
The yarn is made of continuous filaments which are considered to
lie on right cylindrical surfaces along circular-helical paths. The
cylindrical surfaces are concentric and spaced one fiber diameter
apart. All fibers on all surfaces are subject to the same number
of turns about the yarn axis per unit length along the yarn axis.
It follows that helix angles formed by the fibers at each concentric
surface will vary, with the maximum helix angle occurring at the
outermost fiber and zero helix angle at the yarn axis. It is
assumed that differences in path length of filaments at different
concentric surfaces are accounted for in the spinning or twisting
operation without the necessity of fiber tension or compression.
The local helix angle for a given surface is constant for all fibers

on that surface and




tan Qy 7 2Mvt (1)

where Q. is the fiber helix angle on the cylindrical surface of

radius v and T is the twist per inch of the yarn. In particular,
the outer fibers of the yarn form the helix angle, Q, with the
yarn axis and if d 1is the yarn diameter

g | tan Q =TT (2)

The single yarn described above (taken to be a warp yarn for
convenience in nomenclature) is assumed to form a torus when bent
around a filling yarn, as illistrated in Figure 1. The radius of
the bent warp yarn is designated as a and the radius of the torus
as r. The torus radius, r, equals the sum of the radii of the
warp (crown) yarn and the filling (inner) yarn.

Fig. |. Torus Form of Bent Yarns.




Let O be the torus center and let P be a point on a fiber
as it twists around the warp yarn. Let X;, X,, and X, be mutually
orthogonal axes forming the cartesian coordinate systém. Let X3 be
the axis of the torus, i.c, the axis of the filling cross yarn.
The circular path of the warp yarn lies in the X3 plane., The inter-
section of a plane through Xs, making an angle © with X1 is indicated
in Figure 1 as passing through point P. The circular intersection
of the torus and indicated plane is enlarged on the right side of
Figure 1. Let J Dbe the yarn axis at the circular section. Let
OJ intersect the circle at H. Draw JQ in the plane of the section,

perpendicular to JH.

Designate the vector OJ as X, 0Pas ¥, HJ as a n, &

as a b and JP as d. The vector T is_a unit vector coinciding
with, but in opposite direction to vector X. Vector n 1is the
principal normal to the space path of the warp yarn axis. The vector
b is also a unit vector, is perpendicular to n, and is called
the binormal of the warp axis space path. Angle O lies between
the X; coordinate and the vector X. Angle @ lies between vector
X and vector d., The ratio between 8 and ¢ is assumed to be

constant and is designated as A\ , i.e.
g =Noe (3)

This simply means that in proceeding along the warp yarn axis (in
the torus configuration) through an angle © about the torus axis,
the fiber twists around its yarn axis through a corresponding angle
d. TFor each revolution around the torus axis (0 = 2T ) there are
)\ revolutions or turns of the fiber about the warp yarn axis.

Consider the componsnts of the above named vectors:

X [:r cos B, r sin 9:]

- (4)
b [o , 0 , 1]
'H [}cos e, -gin © , é]
Now 3 =acos ) ntal(sin g) b, | (5)
therefore g - g $4d=X+acos@fntasingb (6)
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or T [:Yl, Y,, Y3] can be written as
Yy =rcos 6 + acos f (-cos & )
Yy=rsin 6 + acos f (-sin 6 )
Y3 = a sin ¢
and substituting (3)
Y] = rcos 6 - acos A6 cos ©
Y, =rsin 6 - a cos Ae sin
Y3 = a sin Ae (7)
If dS is taken as a differentisl element of arc length along the

fiber passing through point P it follows from differential geome-
try that ‘

dy, dy,
ds_ = = _* (8)
a6 46 e

Following Chow's [2] analysis an expression is now derived for the
element of arc length, dS, in terms of the torus geometry. Note
this is but a special case of Schwarz's consideration [1] of the
twist structure of plied yarns, For first derivatives:

dY;

pe——

de

-r gin 6 + asin 6 eos'>\6 3 a>\sin>\6 cos O

— r cos 6 =-a cos >\9 cos 6 + a )\ sin )\e sin © (9)
ae ' o _

dY3

mer——

ae

a).\cosxe

Squaring each equation in (9) and adding, we have from (8) the dif-
ferential arc length




ds \/(a cos A8 - r)2 + a2 X2 4e (10)

or

ds

A

By integration of dS through a complete turn of the fiber about
the yarn axis it has been shown that [1]7[2] the length of the fiber
lpop in the bent yarn equals* that of the fiber loop in the yarn
before bending. It follows that no tensile strain will take place
in the individual fibers of a yarn upon bending if they are allowed
to redistribute their lengths within individual loops about the yarn
axiss This assumption was made by Czitary ih his analysis of
bending strains of wire cables [9] « However, if excessive friction
prevents the slightest redistribution of length within the loop,
differences in local fiber path lengths must result in local tensile
and compressive fiber strains,

\/(r—acos g )2+a2 af

Axial fiber strain,{, is defined, in the case of yarn bend-
ing, as

é___ dS - dSo ' '

s, (1)
where dS is the fiber path length in the angular increment d@ when
the yarn is bent and dS5, is the correspondipg arc length in the
same df for the straight yarn. It is here assumed that during

the bending process no new fiber material is introduced into the
angular increment d¥ because of the restriction on fiber movement,

The arc length dS, is determined from

adf = sin Q (12)
ds

and )\ from

)\=2'IT rT=2-|T r tanQ): rtan Q (13)
_ v 2TT a a

#Within well-defined limits.
-t 6 L2




*

Substituting (12) and (13) in (10) and (11)

I (r-a cos 8)° + o> ag

rztanzg
- 1 =
- g-dg _l

sinQ

r - cos f)?+ ><2 | '
X

Values of & are plotted in Figure 2 against ¢ as @ varies from
0 to 180°., Symmetry conditions apply in the range @ equals 180°
to 3600, Parameter r/a varies from l.5 to 2.5, the normel range of
diameter variation encountered in practical fabrics, Parameter

is varied from .5 to 1.5 If F is defined as the twist multiplier,

T =‘, F\/N .. (15)

where T 1is the twist in turns per inch, and N is the yarn count.
If the specific volume of the yarn is taken to be 1.1 so that,
following Peirce [4],

d=2a= —1 (16)

VT

where K depends on the yarn system used (K = 28 for cotton, 15.4
for woolen cut, 22.8 for worsted), then

A= (i’) . o




. FIG, 2 .
LOCAL FIBER STRAIN CAUSED BY YARN BENDING ASSUMING NO FREEDOM OF
MOTION BETWEEN FIBERS

LOCAL STRAIN AT ANGLE ¢
A
N

A
D

[ Fig. 20 Fig.2b , Fig.2c¢c
[
4
.2
0
r/a = 1.50 | r/a = 2.00 ‘r/a=z2.50 "
1 1 1 4 1 [ 1 9
o] 60 120 180 180 [+ 60 120

0 60 120
ANGL.E ¢ OF FIBER SEGMENT

For r/a equal to 2, that is where warp and filling yarns are of
equal diameter, the range t X\ squals 5 to 1.5!' represents a range
in twist multiplier from 'F equals 2,23 to 6.,70!' in the cotton

- gystem, '1.23 to 3.69' for woolen cut and '1.38 to 5.45' in the
worsted system. It is evident in Figure 2 that & is 0 at § =
TT/2 and reaches a maximum in tension (positive strain) at § = 180°
and a maximum in compression (negative strain) at § = 0°. As
the relative twist, represented by A\, is increased, € is decreased.
As the ratio r/a increases £ decreases. -



Bs Average Strain

In an actual yarn it is probable that local slippage and
length redistribution will take place before strains of the magni-
tude plotted in Figure 2 are reached. A parameter of a more practi-
cal nature is the average strain which takes place in tension or
that which takes place in compression. It is evident from Figure 2
that the fiber path between ¢ =TT/2 and Tl is in tension in the
bent yarn, while between @ = 0 and Tr/2 is in compression. It
remains to determine the path length along the outer segment of the
path, and along the inner segmesnt, and to compare these lengths with
the helical fiber path of the unbent yarn. As has been indicated
(1) (2) the length of the fiber loop in the bent yarn equals that
of the fiber loop in the yarn before bending. It follows that the
overall extension of the outer path must equal the overall extension
of the inner path, since both have the same length in the unbent
yarn, i.e. equal half a helical loop. Now let A S be the differ-
ence in path length in the outer and inner parts of the bent yarn
fiber loop. By symmetry we can deal with

4s j / (18)
2
, i

the incremental distance can be expressed as
(19)

‘ 2
ds = V(r-acos Ae)2 4 a2 A2 de:akﬁ(z_x) _ cos ;:6] +1de

Upon integration of (18)

2 ar 22’ TN

As =
2

5 (20)
AVa? )41 3 ("Ja? X 4 r2‘)




Now the average tensile strain in the top loop

AS/2
» iy
E = ds (1)
T
o
From the geometry of the straight yarn
(22)

yia .
das = Trdaz }\24—1‘2
A

which agrees with Chow's derivation [27] of the length of A loops

s=2T (2 A2 ¢ r?)1/2 (23)
therefore
2 ar ‘ | 2 a5 r )\
. Ewe ()
. I <a2 )\2+ 2)1/2
) v -
(24)
. 2 ar | ' 2 a5 r }\2
ET Tr(az }\2 + r2) - 3T (a2 )\2 + r2) 3
(25)

- 10 -




In Figure 3 the relationship between A 5/2 and A is presented
graphically for various r/a ratios. For the purpose of this computa- '
tion AS/2 has been set equal to the first term in (20), or

As .~ 2r |
5 = (26)
AYN2 + (r/a)?

It is seen in Figure 3 that AS decreases with increases in A or
(r/a)e Omission of the second term of (28) causes less than 1%
error for the case where r/a = 2 and A = 1. In Figure 4, & is
plotted againgt A for various r/a ratios. For the purpose of this
computatiorn &£ is set equal to the first term of (33),

or
- 2r/a

- ﬁ[kz o) ¢

Again an error of less than 1% is introduced by this approximation
for the case r/a = 2 and A = 1.

The practical utility of the quantities € and A 5/2 must of
necessity be limited by the degree to which actual yarns follow the
geometric assumptions of the derivation. In a general sense, however,

gives a comparative value which may find use in the design of
more durable twisted structures in which fiber or strand movement
is restricted. In structures which allow complete freedom of move-
ment, the quantity S/ represents the length of fiber which passes
the point @ = TT/2 in the redistribution of material from lower
to upper parts of the helix loop. ,

C. Local Helix Angle

It has been indicated that the helix angle Q, of a straight
singles yarn is dependent (1) (2) on the local radius, v, of the
yarn and on its twist. This angle Q, is therefore constant for
a given v and T at every point along the yarn. However, when
the yarn assumes the bent form of Figure 1 the local helix angle is
no longer a function of v and T alone, as has been indicated by

- 11 -




Flg. 3

DIFFERENCE IN PATH LENGTH OF UPPER & LOWER PARTS OF THE

FIBER LOOP INDICATED AS A FUNCTION OF r/a AND X, MHERE r

IS TAKEN AS THE UNIT OF LENGTH & 43/2 IS EXPRESSED IN TERMS
OF THIS UNIT
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FIG. 4
AVERAGE STRAIN IN HALF LOOP DUE TO DIFFERENCE IN PATH
LENGTH FOR VARYING X AND r/o. ,
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o
=]
o
3
™
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Y
x
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z
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& f/0=2.25
< -
r/a=250
To2l
>
<
2 I} 1 L L L L i
0.3 0.6 0.7 0.8 0.9 1.0 " i.2 l_.S

TWIST RATIO X
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Chow [2] for the general case of the singles yarn as it lies in the
plye Following the method used for the ply yarn (2) we derive the

relationship between the local helix angle and the parameters A ,

r/a and § for the special case of the bent singles.

In Figure 1, X represents the vector connecting the origin
and a point on the path of the yarn axis, while Y 4is the fiber
path vector. To determine the local helix angle we first derive
expressions for t, the unit tangent vector to the path of the_
yarn axis at the section (point J) indicated in Figure 1; and T,
 the unit tangent vector to the path of the fiber at the same section,
i.e. point P, It follows from

t. ‘-r--'-'_' | E“ Tl cos‘o( (28)

that ' cosk =t ., T (29)

where € is the local helix angle.

dax _ g, T - -
From Frenet % = ; % =T (30)

where s 1is the distance along the yarn axis and S 1is the dis-
tance along the fiber as it lies in the bent yarn.

First for t

ot

- - dX o dX
[tl s b2, t3] =30 " =6

-ld(r cos®) , d(r sin8) , O
-[ T de . r de ] (31a)

= [-— sin® , cos® , O]

Ffom (30) (10) aﬁd (8)

=

7=

815
S1%
&l%

(31b)

-13 -




ot 62
T.7={(racos A9) = cos K

V(r-a cos A 68)° +a

(r-a cos A 6)2

or -

(r-a cos X 6) (r-a cos @) (33)

In Figure 5 a graphical relationship between o and A\ is
presented for the inner, outer, and center points of the bent yarn
(=0, TT , and. TT/2) and for various r/a ratios, Clearly &k is
larger at @ = 0 than at any other angle, and is a minimum at @ =

. At g = /2 » :

tanol = é;'-\- = ié-}T-F—T = 2T aT (34)

which is the value of tan Q in the unbent yarn. No helix angle change
will take place along the 'neutral axis' of a yarn during bending
while maximum changes will be effected at § = 0 and TT. ,

A change in the local helix angle will cause some relative
movement between the surfaces of adjacent fibdrs -- a factor of im-
portance in studies of the internal wear and friction or felting of
yarns and fabri¢s. The extent of this movement may be demonstrated
easily with the aid of Figures 6 and 7. Figure 6 demonstrates the
appearance of fibers in the singles yarn before bending and after
bending, when viewed from the bottom and top of the yarn crown. The
dark horizontal line drawn across the fibers in Figure 6a is rotated
counterclockwise in segments in Figure 6b and clockwise in 6¢c. These
segments. are indicated as aa' in Figure 7, while bb represents the
fiber diameter, and Ob or is the fiber radius. The relative
" movement between two points originally in contact on adjacent fibers
will therefore be 2 aé where

2 ae =2, (cot & = cot &Agy) (35)
2 ae = '2'°>\°°’Sr .



) g=0°
‘0-‘ . / |

) Fig. S
LOCAL HELIX ANGLES IN BENT YARNS
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¥
i
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»
a #s 90°
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TWIST RATIO X

To effectively demonstrate the change of helix angle at the
inner and outer points of a yarn bend, Figures 8 and 9 have been

‘included [3] N [7] o These illustrate the more general singles

yarn bend as it exists in the ply of a wire rope and of a three
ply nylon yarn. Here ellipticity of the filament or strand
section reflects the relative helix angles. Practical considera-
tions of the local helix angle will be taken up in a later section,

D. Local Curvature

For the case where complete freedom of fiber or strand move-
nent exists, local strains occurring in the bending process will
depend solely on the local fiber or strand curvature. Computation
of these local strains has been reported by several workers in the
field of civil engineering, [9] but their work has been confined

-15 -
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Fig. 8. Cross Sections of Wire Ropes GCorresponding to
Plied Yarns. (Courtesy of E.R. Schwarz)

Fig. 9. Cross section of 3ply 102 filament nylon
yarns. Note fibers at center of piy lle ot o steep
angle with the ply oxis os evidenced by their ellip-
tical appecrance (Courtesy of E.R. Schworz.)




for the most part to low helix angles typical of wire cable con-
struction. Here we deal with much higher helix angles than are
employed in the previous work and must therefore derive more ex-
act expressions for local curvatures.

From Frenet

. | | (36)

where T is the unit tangent to the fiber at point P in VFigure 1,
dS 1is the increment of fiber length, T is the principal normal

to the fiber path at P and k is the local curvature of the fiber
at P, Let :

u = (acosh@-r) ¢+ a2 A2 (37)

then from (19) and (31b)

T = df = d&f d& - &f L (38)
- ds de ds de yu

Now
=Y )
d VUi - 1 u = du 1l u % 2(a cos A 6-r) (-a ) sin\e)
a6 2 . 2 ,
- =(a cos A8 -r) a Asin A\®
(39)
\/(a.‘cos')\e-r)"zﬁ-a2 )\2
and
(40)
m o= 4T 48 o 4 af _1_ | ge
dé ds de de V_u— ds




Ve d . df 4d_Vu
o2 a8 do )
kn = il
. (41)
u @F d&f (acosA®-r) (a Asin A8)
a2 t 96
u2

Taking the dot product of Kn . Kn we obtain (taking g = r/a)

(cos >\o-g)2 t AL $2 Xz cos 6(cos )\B-g) $4 >\2 ain2 e =~ Azsin2 )\egcoa 6-522

‘ (coa)\G-s)2 + A2
a [(cos )\6—5)2 + )\2}

(s2)

This expression is greatly simplified for the case where g = ©
andcos § = cos A® = ¢ landsin A® = 0 so that

| K = \’Q-g)?‘ t A2 e o laws /\2L
a [(l-g)2 + )\2] a [(1-—3)2 + )\2]

(43)
- 19 -




g =TT, cos § =-1; sin Ae=0
(44) _

\ﬁug)z + )\L’ +2 N () [(1 +gt )\2

k=

a[(l+g)2+>\2] . a[(l+g)2+ /\21

andat § = TT/2cos AN8=0; sin A8 = 1

g2+).l‘ + h)\z - j;—%\%

g7+
k =
a (2+ X0
(45)
L
& 2
by b
: Y toNREL A
a (@t 22

Finally in Figure 10 the dependance of k on N\ for several values
of g or r/a is illustrated for the points § = O, /2 and TT .
It should be emphasized that in dealing with cabled structures the
reciprocal of k computed for the major element of the basic
structure becomss the bending radius r in computations of strains
set up in the sub-element. For example, in a plied structure whose
single twist is hard but whose ply twist is soft, bending will im-
pose little tensile strain on the singles since they are rela-
tively free to move about., However, the change in curvature of
the singles yarn axes, brought sbout by the bending, will impose
tensile strains in individual fibers since they are restricted
from moving freely within the singles yarn. In this latter calcu-
lation of yarn geometry r is taken as 1/k of the previous

calculation.




FIBER CURVATURE k

FIG. 10 ,
FIBER CURVATURE vs. THE VARIABLES OF YARN GEOMETRY
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E. The Geometric Parameters in Textile Terms

Textile designers seldom work with data relating to twist
ratios, or radius ratios. Fortunately, the dimensionless parameters
used throughout this report can be readily computed from more prac-
tical yarn data. Equations (15) (16) and (17) illustrate the
simplicity of the conversions. To facilitate computations, however,
it was deemed advisable to reduce (17) to graphical form and
designate the radius ratios in terms of yarn number ratios accord-
ing to the relationship:

: = V[izi: t 3 B (46)

where the warp yarn of count Nw is considered bent around the
filling yarn of count Nf, This has been done in Figures 11 & 12,
which may be used in connection with Figures 3, 4y 5, and 10 to
determine differences in path length, average strains, local
helix angles, and fiber curvatures in terms of yarn counts and
twist multiples.

It should be emphasized that this geometric analysis does
not allow for flattening of one yarn as it is bent about the other.
Flattening will alter the geometry of the yarn being bent, but the
greatest effect, as Platt points out, will be due to an increase
in the radius of curvature of the warp and filling yarns at their
point of contact. It can be shown that this new radius (correspond-
ing to r - a in Figure 1) will be equal to the original radius
of curvature divided by the cube of the flattening coefficient,

F. Textile Yarns and Wire Ropes

Civil engineers have studied the distribution of bending
stresses in wire ropes used for heavy duty hauling. . Since 1912
several analytical solutions of the geometric structure of twisted
cables subjected to bending have been proposed by European
engineers. One such solution based on the kinematic method was
first used by Woernle in 1912 and was more recently amplified by
Czitary [9] . It is of interest to compare the assumptions and
results of Czitary's study with the analyses of this report.
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The kinematic method is based on assumptions similar to those
of the above analysis. In kinematic terms the cable is considered
to form 'a torus whose cross sections are circular and plane. The
ratio of § to © is considered to be constant as in (3)s The
method pictures a particle moving along the wire strand as it lies
in the bent cable. The motion of the particle consists oft 1)
constant velocity about the periphery of a circle comprising the
plane section of the torus (around circle HQP of Figure 1); and 2)
constant angular velocity of this plane seftion about the center of
curvature of the cable axis, i.e. the torus center.

Czitary derived an expression for the differential arc length
along the particle path (strand axis) in terms of the radii of
cable and torus, the angle © and the twist ratio X . Integrating
and discarding terms of lesser magnitude, he obtains:

g =T
das- = rTT + 2 % _2LaEJIE
FIDS A L r (47)
§-T0 |
2

" representing the arc length of the outside quarter loop, and for
the inside quarter loop:

g = T
2
. »TL N2 TT w8)
ds* = rZ,A - 3\ + ahr
g =0

Subtracting'(he) from (47) he shows the difference between outside
and inside quarter loops to be / :

As :. 23 o -
2 A (49)




as contrasted to (26). If however, r >>a and aT<{{ 1, A 2
will be small compared to (r/a) 2 and (26) will reduce to (49).
In most textile uses, however, r is of the same order of magnitude
as a and the product of yarn radius and twist is not small

relative to unity. Equation (26) should therefore be used in prefer-
ence to (49) in textile studies.

Adding (47) and (48) we have the half loop length in the bent
yarn:

g =TT
2
ds=.r_>\7."_.. p AT (50)
2r
g=0 .

corresponding to (22) for the straight yarn. If (22) is expressed as:

dS=J§\r— 1,.(‘;\

)2 1/2

g =0

and use is made of the binomial theorem where

2

Vl+ x = l + lz— - —%' x * 'ﬁ}—' x *' * o s ¢ @
2 .
taking X = (al;t\-—) {1, then the half loop length in the

straight yarn becomes:
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N § (52)

corresponding to (50) for the bent yarn., Czitary concluded that the .

increase in length of the outside of the helix turn is taken care -
of by the decrease in length of the inside helix turn. This agrees

with the previously stated conclusion [l 2] that, within specified
limits the length of the fiber loop in the bent yarn equals that

of the fiber loop in the yarn before bending. Chow's q[z] limjta-

tions on this equality are specific for he shows that the :anariance
of loop length depends on the condition that:

£ . \[2 (_r_)re")\z -1 ()

If A\ is of negligible magnitude r/a must exceed 2.42 to
satisfy (53), or conversely when

..:_ = 1,50; must exceed 1.32
_§_ = 1,75; must exceed 1,19
-i- = 2.00; mist exceed. 1.00
{_ = 2,253 must exceed .40
- = 3,50, mist exceed .00
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The limitations imposed by (53) apply as well to the integra- L
tion of (18) to give (20)., The concept of average strain introduced
in (20) and (21) is likewise limited by (53). Nevertheless, it
‘was considered advisable to plot the entire pradtical (in textile
terms) range of values for A S/2 and £ in Figures 3 and 4 for
the purpose of achlieving continuity and to permit estimation of
orders of magnitude. If high accuracy is desired for values of
average strain one may graphically integrate the local strain plotted
against @ and divide by the total change in @ in Figure 2.
Where the conditions of (53) are not met, the £ versus @ curve
between § = O and 45° will not equal the curve between § =
45° and 90° as is evident in Figure 2. As would be expected from
(53) the curves of Figure 2 show increased symmetry as r/a is
increased,

The kinematic method has been used to determine local helix
angles, In effect the velocity of the particle at a given moment
is the vector sum of its velocity components in the circle HQP of
Figure 1 and around the torus due to movement of the plane section,
The tangent of the angle between this velocity vector and the cable
axis is simply the ratio of the two velocities, and can be shown
to equal:

tan A = t r
o an Q r-acos@ (54)

From (13)

a A

tan Q = =

whence agreement with (33) is reached. Carrying the kinematic
approach further it has been shown that increased lateral strand
space is not needed for low twist cables because of change in
local helix angles during bending. This follows from the fact
that changes in the major axes of the elliptical sections of the
inclined strands in the outside loop are equal and opposite to the
changes in the inner half of the loop. It follows that in low
twist structures there is no lateral stress developed around the
small circle perimeter. This point bears further consideration
in the study of densely packed high twist structures.
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To determine local curvatures Cgsitary determines 1) the normsl
acceleration of the particle due to rotation in the circle HQP
(Fig. 1), 2) the normal acceleration due to rotation of the circle
HQP about the axis 0O, and 3) the Coriolis acceleration parallel
to the axis of the cable due to the angular velocity of the circular
section HQP about the axis O and the component of relative
velocity perpendicular to axis 0O, Czitary then determines the
projections of these accelerations onto two mutually perpendicular
planes both containing the tangent to the strand, or particle path
at P, One plane is the oscillating plane of the strand path while
the other contains the binormal of the path. In each plane the
components of acceleration perpendicular to the path tangent at P
are used to obtain the furvature of the path projection, according
to the relationship: ‘

v

r=7;"

where v_ is the radial component of acceleration in each plane,
C is tﬁe radius of curvature and v is the particle velocity.
The curvatures in the two perpendicular planes are combined to
furnish the local curvature of the strand. The change in curvature
due to bending was determined to be:

J
v

(55)
ak=—3 (rsgsc:(s )] [(3 cos ¢)2 cosz‘(li az(l-cosz¢)(l+sin2-()2]l/2

Equation (55) is based on the relationship between curvature and
bending moment components in a wire cross section, on the assumption
that each component acts independently and on vectorial combination
of the moments to provide the resultant curvature changes.

At @ = 0 (55) reduces to

Ak = (3 =1)

a [}\2 t+ (g-1) 2] 36
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and at =TT to

Aks= (g #1)

a.[)sz-l-(g{-l)z]‘ ‘ (57)

Now the curvature of the strand of the unbent cable or yarn is

k= >‘2

(58)
s@®+ A?)

which when subtracted from (43) and (L&) provides for g=0,T
respectively

Ak = ‘ El— " >\2] ) )\2 (59)
a [ (l--g)2 + >\2] a (82 + >\2)
= Jaee) s A D
a [(l—g) ' A s+ A?)
(60)

If the ratio g or r/a ») 1 as in the case of the bent cable
the denominators of the second terms in (59), (60) equal those in
the first terms and (59) and (60) reduce to (56) and (57). The

change in curvature at @ = TV/2 is small and the subtraction of
of (58) from (45) does not reduce so readily to (55) but rather to

\](:.:;2 +2 )% %, )\L’(gz + MY \/)\"(g2 )
a [824' )\2]’/iL a[gzi- )\2]3/g

N

(61)
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- while (56) becomes

(2+2 23 | (625
3/2

Ak =
a (@2 + A%

However, if r ») a ‘and aT{{ 1, (61) will approach (62) showing
the general agreement of the two expressions for the special case

of extremely low twist structures bent into large radii of curvatures.
For the average textile case (45) remains the more accurate expression
for the determination of bending curvature in individual fibers,

The final subject of Czitary's paper has to do with the torsion
of wire in bent cables. He assumes the wires to be free of torsion
during the manufacturing process while the difference in torsional
strain between straight and bent forms is accounted for in a manner
similar to length changes in the upper and lower loops. In other
words, the torsional strains required in one half of the loop is
provided by the other half and there is no net twisting as a result,
This is evidenced by observations of the rotation of a wire in a
cable subjected to bending. To what extent this required rotation
is hindered in densely packed highly twisted textile structures is
not known, but it is safe to say that its effects are small compared
to the tensile strains which occur due to restrictions on the
longitudinal shifting of lengths from lower to upper loops during
bending.

G. Summary and Conclusions

This report has outlined the results of a geometric analysis
of the idealized structure of a bent yarn., The importance of such
knowledge in problems dealing with the mechanical properties of
twisted, woven and knitted textile structures has been stressed.
Specific attention has been given to computations of local and
average fiber strains which occur in highly twisted dense structures
subjected to bending., The relative motion between fibers in both
loose and tightly packed yarns has been considered, and finally the
effect of bending on local fiber curvatures has been studied.

It is clear that the analysis has taken into account only the
extreme cases of complete freedom or lack of freedom of motion
between fibers during bending of the yarn. In practice the packing
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density of the yarn and the frictional behavior of the fibers will
determine the relative length transfers between upper and lower
loops halves. The length transfers will influence the resultant
‘local strains and therefore the fiber ten31le stresses in the upper
half loop. These stresses in turn develop lateral yarn pressure
components which determine the frictional resistance to further

length transfers.

For maximum bending fatigue resistance and wrinkle resistance,
minimum friction between fibers and an open yarn structure appears
desirable. In this way tensile strains resulting from bending of
twisted structures may be kept to a minimum. If more elastic fibers
- are used in a fabric structure, closer packing of the yarn structure
is possible without exceeding the yield level of the fiber in yarn
bending. Clearly some degree of interfiber friction and yarn
density is desirable if sufficient fiber strain and therefore perma-
nent set is to be achieved when inserting a crease during the press-
ing operation. This is believed to be the reason why tightly twisted
worsted suitings can be given such durable creases as contrasted
to loosely twisted woolens. It has been said that the observed dif-
ferences in crease acceptance of worsted and woolens are due to the
relative radii of curvature reached at the fold. This factor is no
doubt significant but the analysis presented here demonstrates that
freedom of fiber movement can entirely eliminate strain over a
wide range of curvatures., Considerably more emphasis must therefore
be given to the packing and frictional behavior of fibers within
the yarns.

Reasoning along the lines indicated above may be extended to
studies of internal friction in yarn, cord, and rope structures.
Where it can be shown experimentally that the cause of material
failure is internal abrasion, the textile structure involved may be
redesigned with the aid of the A& S/2 graphs developed here, and
dislocations of its adjacent elements during bending may be dras-
tically reduced. In like manner, local rubbing due to changes in
local helix angles may be controlled.

Cords and ropes are multiple textile structures for which bend-
ing generally does not induce tensile strains in the major structural
components because of the relative freedom of movement between
these major components. However, freedom of movement between the
sub-components within the major components is often restricted. 'In
such cases computations of the curvatures of the major components
due to total bending of the structure is facilitated by the graphs
presented in this report. These curvatures can be used in subse-
Quent computations of the local tensile strains in fibers or yarns
of the subcomponents.




It is clear that much empirical work is necessary to demonstrate
the applicability of these analyses. Such experimentation will
throw light on the important factors of yarn flattening during bend-
ing and of yarn consolidation under tension. Without doubt there
will be cases where deviations from the idealized geometry of this
report will dominate the textile structure. It is our belief, however,
that the cases for whirh the idealized geometry will be of use are
numerous. For such cases this study provides much-needed quantita-

tive relationships.
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